Grid-connect with batteries Case Study

3.5kW Solar Power Hybrid System

14 Canadian Solar 250W Polycrystalline Modules3kW Nedap PowerRouter Single Phase Hybrid InverterNeuton Power 24V 600Ah Battery Bank

Project Summary

Location Quorrobolong NSW

Project Type

Residential Grid Connect with Batteries

Project Size

Single-phase 3.5kW with 14.4kWh Batteries

Module Type

Canadian Solar CS6P-250P

Inverter Type

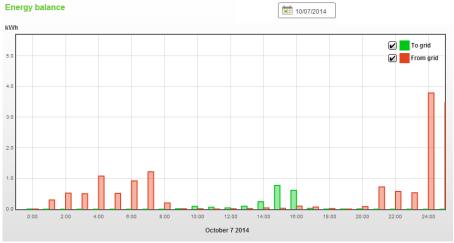
Nedap PowerRouter PR30SB-BS

Battery Type

Neuton Power 24V 600Ah Battery Bank

Date Installed

September 2014


Orientation

North East (azimuth 6°, tilt 22°)

A 3.5kW system with battery storage installed in a rural suburb in western Newcastle is aimed to reduce the occupant's electricitydependency of the utility network as well as reducing their electricity costs.

The system works by storing the excess energy generated from the solar panels during the day into the batteries. Once energy demand exceeds generation from the panels, the batteries will automatically start to offset those demands.

At the peak hour rates of as high as \$0.53/kWh (inc. GST) in current electricity market, having a solar power system with batteries will help maximize savings by covering the costs of electricity during that period.

Product Highlights

Outstanding performance at low irradiance

Long term system reliability

25 Year performance warranty insurance

Batteries comes with strong support & proven track record from Australian company YHI Power

All-in-one inverter with intelligent use of energy optimization

Estimated Yearly Savings² \$2,000/Annum

Estimated Yearly Yield¹

5.7MWh/Year

1. Based on a yearly average of 4.7PSH. 2. Based on current electricity market rate

Grid-connect with batteries Case Study

12kW Solar Power Hybrid System

48 Hareon Solar 250W Polycrystalline Modules
Two 5kW Nedap PowerRouter Single Phase Inverters
Neuton Power 24V 600Ah Battery Bank

Project Summary

Location Quorrobolong NSW

Project Type

Residential Grid Connect with Batteries

Project Size

Single-phase 12kW with 14.4kWh Batteries

Module Type

Hareon HR-250P Polycrystalline

Inverter Type

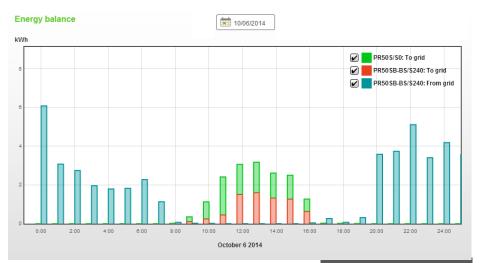
Nedap PowerRouter PR50SB-BS & PR50SB

Battery Type

Neuton Power 24V 600Ah Battery Bank

Date Installed

September 2014


Orientation

North East (azimuth 6°, tilt 22°)

A 12kW system with battery storage installed in a rural suburb in western Newcastle is aimed to reduce the occupant's electricitydependency of the utility network as well as reducing their electricity costs.

The system works by storing the excess energy generated from the solar panels during the day into the batteries. Once energy demand exceeds generation from the panels, the batteries will automatically start to offset those demands.

At the peak hour rates of as high as \$0.53/kWh (inc. GST) in current electricity market, having a solar power system with batteries will help maximize savings by covering the costs of electricity during that period.

Product Highlights

Outstanding performance at low irradiance

Long term system reliability

25 Year performance warranty insurance

Batteries comes with strong support & proven track record from Australian company YHI Power

All-in-one inverter with intelligent use of energy optimization

Estimated Yearly Savings² \$6,300/Annum

Estimated Yearly Yield¹

19.6MWh/Year

1. Based on a yearly average of 4.7PSH. 2. Based on current electricity market rate

